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The "translation" inconsistency in the theory of nucleation is discussed in historical 
perspective. A theory is then developed, beginning with the classical phase integral, 
which not only allows all approximations to be well defined, but also leads to the most 
"natural" droplike model for the cluster. The theory makes it possible to apply, in 
a consistent manner, the thermodynamics of curved surfaces or, alternatively, molecular- 
dynamic numerical computation schemes to the evaluation of the partition function 
of the cluster. If the cluster is treated as a macroscopic drop (having the free energy of 
a macroscopic drop), the result for the distribution of clusters differs in only a minor 
way from that prescribed by the conventional theory of nucleation. It is concluded 
that for liquid nuclei the conventional theory is consistent, but that a replacement 
factor may be necessary for solid nuclei. In general, however, the major problems 
confronting the theory involve the precise evaluation of the work of cluster formation. 

KEY WORDS:  Nucleation; condensation; rate; partition function; clusters; surface 
layer; unstable equilibrium; fluid. 

1. I N T R O D U C T I O N  

The theory  o f  the condensa t ion  o f  supersa tu ra ted  vapor  in to  l iquid has  received 
much  a t ten t ion  recently. 11-7) Cons iderab le  d isagreement  exists over  some o f  its 
details,  especially in connect ion  with the so-called " t r a n s l a t i o n - r o t a t i o n  p a r a d o x . "  
As  o f  now, there seems to be general  consensus,  however,  tha t  the conven t iona l  
theory  contains  no t  only  errors  in app rox ima t ion  bu t  logical  inconsistencies.  W h a t  
controversy  remains  sur rounds  the p rope r  m e t h o d  o f  e l iminat ing  these incon-  
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sistencies and the magnitude of the correction it entails. In order to be able to refer 
to these various questions in a more concrete manner, it will be convenient to have 
a brief description of the conventional theory. ~s-la) 

The rate process leading to condensation, and occurring in an initially homo- 
geneous mother phase of supersaturated vapor, is assumed to consist in the formation 
of large clusters of molecules (embryos of the new phase) by the sequential accretion 
of single molecules. Thus, if Ai is the symbol for a cluster of i molecules, the reactions 
leading to A~ may be diagrammed as 

A1 + A1 ~ A2 

A~. + A 1  ~ A ~  (1) 

Ai-1 @ A1 ~ A i 

It is recognized at the outset that a truly nonequilibrium theory of rate is impractical 
(although desirable). Consequently, detailed balancing is invoked in order to estimate 
the rate constants for the reverse reactions exhibited in Eq. (1). For this reason, it is 
necessary to consider the so-called equilibrium distribution of clusters imagined to 
occur when a formal constraint is imposed upon the vapor, forbidding condensation. 
Knowledge of this distribution is equivalent to knowing the equilibrium constant for 
each of the reactions in Eq. (1), and permits the use of detailed balancing. 

The theory which then emerges provides an expression for the rate at which 
nuclei are produced in the mother phase. A nucleus is considered to be a cluster 
which can gain or lose molecules with a decrease of system free energy. When, as in 
the conventional theory, it is approximated as a liquid drop, it is that drop which (in 
the absence of the constraint forbidding condensation) can nevertheless remain in 
unstable equilibrium with the supersaturated vapor. Thus, the formation of a nucleus 
requires an increase in free energy. This free-energy barrier is associated with the 
formation of the interface between the liquid (nucleus) and the vapor. 

The rate of nucleus formation is assumed to correspond to the rate at which 
liquid drops appear in the system. The theory is constructed in such a way that it 
loses meaning as soon as the supersaturated state begins to collapse catastrophically, 
and is therefore a precatastrophe theory aimed at predicting the onset of collapse 
rather than the actual rate. The rate J appears as a function of the so-called super- 
saturation ratio 

S = P/Po (2) 

where p is the actual pressure in the vapor and P0 the saturation pressure at the 
temperature in question. The rate J also depends on temperature, liquid density, 
molecular weight, and surface tension. The rate proves to be spectacularly sensitive 
to S, passing from an immeasurably small to an enormous value within ranges of S 
typically of the order of AS  ~ 0.1. Thus, the point of collapse is well defined 
experimentally. 

In the conventional theory, a cluster (drop) containing i molecules is itself 
regarded as a distinct molecular species in an ideal-gas mixture. 
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Its chemical potential should therefore have the form 

I& -~ Bi(T, V) -k k T  In(hi~N) (3) 

where ni is the number of clusters of size i and 

N = ~ ni (4) 
i = l  

is the total number of "molecules" in the system, 2 while T is the temperature, V the 
volume, and k the Boltzmann constant. The condition of equilibrium among clusters 
is of standard form, 

i/z 1 = / L  i (5) 

and substitution of (3) into (5) gives 

ni = N exp[--(B~ -- ilzz)/kT] (6) 

for the equilibrium distribution. 
According to Eq. (3), Bi is the chemical potential of species i when n~ = N, i.e., 

when only the species i is present! But the chemical potential of a one-component 
system (component i) is the free energy per/-molecule, and since an/-molecule is a 
drop of i single molecules, Bi must be the free energy of  a drop composed of i single 
molecules! Thus, early writers set 

Bi = itz~ + 4rrcr(3v/4rr) 2/3 i 2/3 (7) 

where/z~ is the chemical potential per molecule in bulk liquid at the temperature in 
question and at the pressure outside the drop, while cr is the surface tension and v 
the volume per molecule in bulk liquid. The first term on the right of Eq. (7) is the 
usual bulk contribution to the free energy of the drop, while the second term can be 
expressed as c~i 2/~, where 

c~ = 4rrcr(3v/4rr)2/~ (8) 

is the surface contribution. Substitution of Eqs. (7) and (8) into (6) yields 

where 

ni = N exp(-- W~/k T) 

W i  = (l~ - -  1~1) i § ~i  2/3 

(9) 

(lo) 

is usually called the reversible work of formation of a drop of size i. Actually, it 
would only be this if the process of formation were a constant-pressure one. The 
error in identification is, however, negligible. 

2 The number of clusters is usually so small that N can be accurately approximated by the number 
of single molecules in the system, except when the vapor contains dimers initially. 
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There are several serious approximations in Eq. (7), not the least of which is 
the fact that clusters containing very small numbers of molecules cannot be identified 
with drops having macroscopic characteristics. However, Lothe and Pound (1) pointed 
to a more fundamental difficulty having to do with logical consistency. To understand 
this, consider the partition function Q in the canonical ensemble of an ideal gaseous 
mixture, 

q~' (11) 
Q = ] ~  hi! 

where qi is the molecular partition function of the ith species. Since the Helmholtz 
free energy is 

A ---- - - k T l n  a (12) 

and 

we find, exactly, 

~A 
= ( 1 3 )  

~ = ( - - k T  ln(qjN))  q- k T  ln(nJN) 

Comparison with Eq. (3) yields 

Bi -~ - - k T  ln(qi/N) 

Substituting Eq. (14) into (5) gives 

n~ = qi exp(itzz/kT) 

(14) 

(15) 

(16) 

Now, q~, being a molecular partition function, contains contributions from 
translational, rotational, and several internal degrees of freedom. Lothe and Pound 
call attention to the fact that in usingEq. (7)one is in effect using in q~, the translational 
and rotational degrees of freedom of a drop which is in some sense at rest in the 
laboratory frame of reference, whereas the translation ordinarily dealt with in q; 
extends throughout the whole volume V of the vapor. Therefore, if Eq. (7) is to be 
used, some correction is necessary. 

It is really at this juncture that the various disagreements among authors arise. 
Assuming only that the vapor consists of an assembly of noninteracting clusters, 
Eq. (16) is perfectly rigorous! However, we have no exact method for evaluating qi. 
In the conventional theory, it is evaluated, in effect, by making the approximation 
Eq. (7). Lothe and Pound recognize that Eq. (7) accounts for the surface contribution 
to Wi in a consistent manner (at least if clusters are identified with drops having 
macroscopic properties), so in making what they feel is a needed correction, they 
concentrate on a situation in which there is no drop surface, namely a fixed spherical 
region (of the size of the drop) within bulk liquid. 

Suppose A~ represents the partition function of this region. They assume that 
the degrees of freedom that are translational and rotational when the region is 
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"released" into the vapor as a drop may nevertheless, 
vibrational. Thus, we may write 

(t) (r)  ( l n t )  ( s u r f )  
qi---" qi qi qi qi 

in Ai, be considered 

(17) 

(~)~(~)~(~t) (18) ~i ~ "'i ,'i "'i 

where the symbols (t), (r), (int), and (surf) stand for translational, rotational, internal, 
and surface degrees of freedom. Let A~ d) represent the partition function of an isolated 
stationary drop which differs from the spherical region only in the possession of 
surface. It follows that 

)t~ a) = Aiq~ surO (19) 

Furthermore, if a~ a) is the Helmholtz free energy of a drop, it follows [see Eq. (12)] 
that 

A~ a) = exp(--a~a) /k T) (20) 

But, except for the negligible (for a liquid) difference between Helmholtz and Gibbs 
free energy, a~ a) is the same as the right side of Eq. (7), so we may write 

If  it is now assumed that 

we can write 

A (a) = exp ( - -Bdk  T) i (21) 

q ( i n O  ~(int) (22) 
i ~ ' ' i  

t (t) (r)  ~ t (t) (r) ~ t (t) (r)  
1 qi"qu I --B~ = } quq(" I _(surf) = } qi qi { A~a) --B~ 

q' t a~t)A~ ~) } a,q, t ~ }  = t )~,'~ t exp --k--~ ----/-' exp ~ (23) 

where 
t (t) (r) 

qi qi I (24) r ,=  - v ~ , ; ~ -  

has been called by Lothe and Pound the "replacement factor." 
Substitution of  Eq. (23) into (16) yields 

ni = / ' ,  exp[--(Bi -- ipa)/k T] = N ( F d N )  exp(-- Wi/k T) (25) 

Comparison of Eq. (25) with (9) shows that we now have a correction factor 
I ' i /N which will eventually appear as a multiplicative fac tor  in the rate J. Using 
reasonable values of vibration frequencies in the liquid and of moments of inertia 
for the cluster, Lothe and Pound estimate this factor to be of the order of 1017, truly 
enormous. 

Now, it must be understood that the correction represents a new heuristic guess 
grafted on to an earlier one. As we show later, a replacement factor may be indicated 
for crystalline clusters, but not for fluid ones. 
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What is needed is a less heuristic approach in which all the approximations are 
well defined and from which it is possible to see in which direction it is necessary 
to go to obtain improvement. These requirements suggest that a theory be 
developed starting with the classical phase integral so that it is possible to see what 
approximations are being made on the molecular level. The proper treatment of all 
degrees of freedom should then occur automatically, and it will not be necessary to 
invoke adjustment and counteradjustment. A treatment of this sort will be pursued 
in the remainder of this paper. In closing this section, it should be remarked that 
we have discussed only those aspects of the theory in connection with which detailed 
balancing is to be used. Detailed balancing may not be a good approximation in the 
rate theory. If so, additional errors of another kind are involved. Our treatment 
only applies to those situations in which an equilibrium theory of rate is satisfactory. 

2. D E C O H P O S I T I O N  OF T H E  PHASE INTEGRAL 

Consider a vapor consisting of N molecules (which for simplicity we take to 
be monatomic and in their lowest electronic and nuclear states) contained within a 
volume V. Denote by U(rl .... , rN) the potential energy of interaction of these N 
molecules, depending upon the coordinates of position rl ,..., rN of molecules 1 
through N. Then, if we denote by Pi the momentum of the ith molecule, the partition 
function of the vapor, written as a classical phase integral, assumes the form 

. . . .  O = N! J_~ ' "  J exp + U(rl "'" drNdpl dpN (26) 

where h is Planck's constant, m is the mass of the molecule, and/3  is 1/kT. The 
integrations over the momenta go from - - ~  to ~ ,  while those over the coordinates 
of position span the volume V of the vapor. The Hamiltonian in the exponent in 
this equation is separable in the momenta but not in the coordinates. Immediate 
integration over the momenta is possible, but the remaining integration over coordi- 
nates presents an exceedingly difficult problem which usually can only be resolved 
by introducing approximations. 

For example, in highly attenuated vapors (including those which are super- 
saturated), the following approximation, which we shall call the "physical-cluster" 
approximation, might be used. Suppose a molecular snapshot of the gas is taken. 
Then, it is assumed that in the photograph the N molecules will appear to be par- 
titioned among clusters, n~ of which contain i molecules, the clusters being sufficiently 
separated in space so that they do not interact with each other (a molecule in one 
cluster does not interact with a molecule in another). If we take another snapshot, 
the configuration may be different, but the molecules will still be partitioned into 
clusters. 

Actually, at this point, no approximation has been made because the set of numbers 
1/1 , /22  . . . . .  /'/i, etc., which will be denoted by n, can assume any values consistent with 
the conservation requirement 

Z ini = N (27) 
i 
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For example, we could have 

n = {n~ = O, i < N ;  n N  = 1} (28) 

in which case the entire gas would be one large cluster. Obviously, all intermediate 
situations are possible, and so any realizable configuration of the gas can be described 
as a distribution of clusters. The approximation occurs only when we define the 
detailed natures of the clusters ! 

In the integral of  Eq. (26), the N molecules are to be regarded as distinguishable, 
the indistinguishability being accounted for by the l /N!  preceding the integral. 
Corresponding to any given snapshot, we may write the integrand as 

ntex l_ fp ;+", j 2m ' " "  

where j refers to the j th  cluster which contains ij molecules, and rk~ and PkJ are the 
coordinates and momenta of the kth particle in the j th  cluster. In arriving at Eq. (29), 
we have used the fact that 

U(rl , '", rN) = Z u(rlj "'" rij) (30) 
J 

where u(r~j-., rij) is the potential energy of interaction among all the molecules 
within the j th  cluster. Thus, U, as represented in Eq. (30), contains no contributions 
from interaction between clusters. If  we sum the terms like Eq. (29) corresponding 
to all possible distinguishable snapshots, we shall have the integral of Eq. (26). 

At this point, we can proceed with some generality without yet fixing the fine 
details of the cluster. The only requirement is that the molecules of a cluster be close 
enough so that any one interacts with at least one other, and that no interaction with 
the molecules of another cluster occurs in any configuration of the first cluster which 
satisfies the first criterion. 

Take a particular snapshot in which definite sets of distinguishable molecules 
are in definite clusters. In each cluster, choose a particular molecule, say molecule ij 
in thej th  cluster, and agree to hold its position fixed. Now,  consider all other snapshots 
in which the same distinguishable molecules are grouped into the same clusters and 
in each of which the first molecule is held to the fixed position, and sum the terms 
like Eq. (29) for this set of snapshots now integrating over the momenta as well. 
We will get 

ii l ar~j J ~c, exp{--]3u(rz~--" rij)} dr2, "'" dri, t (31) (A/h) 3ij 
J 

in which 

./1 = h(2rrmk T)Z/2 (32) 

where m is the molecular mass. The symbol C~ in Eq. (31) indicates that the integral 
only goes over that range of cluster coordinate space in which the molecules are so 
arranged relatively that they constitute a cluster, rv remaining fixed. 
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The part of the phase integral which Eq. (31) represents may be called a "specific 
pin-down" to indicate that the integration is constrained to the domains C~ 
which in turn are "pinned" to the various fixed molecules, and that "specific" 
molecules are in "specific" clusters. We note from considerations of symmetry that 

dr1,. 
f exp{--/3u(rlj "" rl;)} drzj -.. drl~- = drip(h) 3i~ q~j (A/h) 3i~ cj (33) 

where q~j depends only on ij, the number of molecules in the j th  cluster, and in 
particular not upon rzj. Continuing with the "specific pin-down" of Eq. (31), we 
"release" all the molecules l j  and begin to integrate over the various rlj so as to 
obtain an even larger portion of the phase integral. Here, however, we have to begin 
making approximations ! 

As the various rlj are moved (carrying their clusters with them), situations will 
zrise in which the domains C~. of separate clusters will be so close that the clusters 
will interact. Thus, two or more clusters will have to be merged, and we will be 
dealing with a different "specific pin-down." Clearly, these regions of integration 
will have to be avoided. However, if the vapor is sufficiently attenuated, as it usually 
is in the case of most nucleation phenomena, we can assume that such regions represent 
a negligible portion of the integral and simply ignore them. This is the first approxi- 
mation, and with it Eq. (31) can be integrated to yield [using Eq. (33)] 

where 

I-I (V(h) ~'~ q~.} = 1-[ (h3'Jq~:(iJ)} (34) 
J J 

q; : ( i j )  = (35) 

and depends only on t.'L the number of molecules in the j th  cluster. If  in the original 
"specific pin-down" there were n, clusters containing i molecules, it is clear that 
Eq. (34) would be expressible as 

h3N ~-I {q~(i)} '~' (36) 
J 

where q'~(i) is simply the symbol for all the identical q~:(ij) in which ij = i, 

q~:(i) = ~ f exp{--/3u,} dr2 "" dr, (37) 
Cl 

In fact, q~(i) is simply the partition function of a cluster of size i except for a correction 
for the indistinguishability of the i molecules. The integrations in Eq. (37), including 
the one over r l ,  need not have been performed in exactly the manner indicated. 
Transformations of coordinates as well as integration in some other order are possible 
as long as the domain of integration is consistent with the definition of the cluster. 
The particular route we have followed is merely convenient for the purposes of 
counting and combinatorial analysis. 
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Next, we note that there is a large number of "specific pin-downs" consistent 
with a given distribution n. These can be obtained by permuting the distinguishable 
molecules among the clusters. The number of permutations will be 

(i!) (3s) 

Not all of these will represent new "specific pin-downs" because some permutations 
will differ from others by merely having all the molecules in one cluster exchanged 
for all the molecules in another, or by having several such exchanges. Such permuta- 
tions will only move the positions of the various clusters in the "pin-down," an act 
which is eventually accomplished by the integration over the various rzj leading to 
Eq. (36), and so it would be redundant to count these permutations. Their number is 

1-[ n, ! (39) 
t 

The proper number of permutations N,  is thus obtained by dividing the quantity 
specified by Eq. (38) by that in Eq. (39), 

N~ = N ! / ~  (i!) ~' ni ! (40) 

When we refer to a "pin-down" only by giving the distribution n and the location 
of the fixed molecule in each cluster, we will call it a "generic pin-down." 

The portion of the phase integral corresponding to n is obtained by multiplying 
the quantity in Eq. (36) by N~ and the factors before the integral sign in Eq. (26). 
We get, 

(q~'/i!)~' (41) 
I~." ni! 

The complete phase integral is obtained by summing Eq. (41) over all distributions 
n consistent with Eq. (27). Thus, 

q~' (42) Q = ~  ,1~. n , ,  

where we have written 

q~ = q~/i! (43) 

and where qi is the correct partition function for a cluster of size i adjusted for the 
indistinguishability of the i molecules. 

Now the average value of n~, (n~) is obtained by identifying the maximum term 
in Eq. (42). This is easily shown 12a) to be 

(nl) = qi exp i/z x (44) 

where/~1 is the chemical potential of a single molecule in the gas. This equation is 
identical with Eq. (16) if (n~) is identified with nl, as of course it may be. This result 
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is limited only by the requirement that the vapor the sufficiently attenuated that 
clusters may be defined by the domains C~ in such a way that, at the boundary of Cj ,  
one of the cluster molecules does indeed (for all intents and purposes) cease to 
interact with any of its partners, and furthermore so that the volume of configuration 
space in which clusters interact is negligible. Otherwise, it is perfectly exact and 
general. 

As in the case of Eq. (16), the real problem involves the evaluation of 

1 C 

q~--  i ! A  3~ J e x p  ~ U  i drl drl (45) 

and it is here where the various authors have parted company. The usual procedure 
has been to use, somehow, the information available about the free energy of a 
"liquid drop" of i molecules in order to evaluate q~. Notice that this need not mean 
that the cluster is a drop; only that its properties can somehow be related to those of  
a drop. Lothe and Pound actually use this approach. In Eq. (23), qi is not the partition 
function of a drop-- in  fact, according to Eq. (21), exp{Bi/kT} is the drop partition 
function. The replacement factor is the means of relating qi to the properties of a 
drop. In a more recent paper by Reiss et aL, (2b) another model was used. It was 
characterized by having Cj be a spherical region, centered on the center of mass of 
the molecules in the cluster, and having a radius equal to that of a drop of the same 
number of molecules. Neither could this cluster be identified with a drop. Among 
other things, in a drop, the center of mass fluctuates with respect to the Gibbs dividing 
surface (z~,15~ which constitutes its boundary, while in the described cluster, the center 
of  mass is stationary with respect to the bounding surface. Nevertheless, using this 
model and relating it to the properties of a drop, Reiss et al. were able to evaluate 
what was essentially a new replacement factor, many orders of magnitude smaller 
than the one estimated by Lothe and Pound. 

Because of the arbitrariness in the models for the clusters in both treatments, 
it is difficult to argue for one model over the other. The only way out of the difficult3, 
would involve using a model demanded by the natural requirements of the phenomenon 
itself. Since macroscopic drops are the first visible products of the nucleation process, 
this suggests that clusters be defined so that they are as much like drops as possible. 
A treatment of this kind is presented in the next section. 

3. DROPLIKE CLUSTERS 

Consider how we ordinarily think of a drop in thermodynamic terms. It is a 
body of liquid bounded roughly by a spherical surface, and usually in contact with 
its vapor. If  the drop is truly macroscopic, there is no practical difficulty in locating 
the spherical bounding surface, but when it is very small, account must be taken of 
the fact that the fluid in the drop is not separated from the vapor by a physical 
boundary at which the density changes abruptly from that in the drop to that of the 
vapor. Instead, a transition zone (14,z5) exists within which the density changes con- 
tinuously from that of the liquid to that of the vapor. The thermodynamic treatment 
of equilibrium between drop and vapor now requires the introduction of an arbitrary 
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mathematical surface (a Gibbs dividing surface) such that all the material inside the 
surface is said to belong to the drop, the remainder belonging to the vapor. It is 
convenient to locate the dividing surface in the vicinity of the transition zone. 

The dividing surface is commonly thought of as at rest in the laboratory frame 
of  reference. I f  the drop is moving--for  example, if it is floating in its vapor-- the 
movement is defined by the dividing surface. Notice that if the dividing surface is at 
rest, the center of mass can still fluctuate--a stationary drop does not mean a sta- 
tionary center of mass. It is also true that the material in the drop is fluctuating 

through and about the dividing surface--the distribution of these local fluctua- 
tions in density lead, on the average, to the distribution of matter in the transition 
z o n e ,  

Figure 1 is a plot of density O versus radial distance r from the center of  drop 
in equilibrium with its vapor. The dashed line at rD represents a typical dividing 
surface within the transition zone. The other dashed line at rc is another possible 
choice of dividing surface, lying just outside the transition zone where the density, 
for all practical purposes, has attained its value in the vapor. If  we were to replace 
the dividing surface at rc with a perfectly repelling, nonattracting physical surface 
(i.e., one upon which the potential of a molecule became infinite), the average distri- 

Fig. I. 
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Radial distribution of matter in a cluster. 
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bution of matter (the curve in Fig. 1) would be unchanged as long as the introduction 
of the surface did not change the density o(rc) at rc.  If  the vapor density p(rc) is low 
enough so that the vapor approximates an ideal gas, this will be the case. In most real 
nucleation processes, the vapor possesses this requisite low density. 

Thus, it is possible to think of a spherical container for a drop whose wails do 
not alter the distribution of matter within the drop. Notice that the number of mole- 
cules within the container (within the drop) is determined not only by rc,  but by 
the temperature T and the pressure p of the vapor with which the drop is in equi- 
librium. Even though this number 

;i .r  46> i =  

is difficult to know, it is nevertheless uniquely determined by rc,  T, and p. Conversely, 
if i is given along with T and p, rc is uniquely determined. This unique value of rc(i) 
for given T and p is typically as plotted in Fig. 2. The sharp rise of rc with i beyond 
i* occurs because of passage into the vapor phase where a very large change in rc 
includes only a small additional number of molecules in the container. 

If  the curve of Fig. 1 were known, a reasonably well defined (although not 

T 

r C 

I 

I 

Fig. 2. Container radius versus number of molecules in cluster. 
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absolutely unique) choice for i* and therefore rc = rc* could be made. The definition 
would become more precise the larger the drop, becoming essentially unique in the 
macroscopic limit. In general, rc* could then be called "the radius of the drop." 

Let us assume that by some separate calculation we are in possession of the 
curves in Figs. 1 and 2. To every value of re* at a given temperature there then 
corresponds a vapor pressure p such that a drop of size rc* (or i*) can be in equi- 
librium with the vapor. We will use the unique (or approximately unique) relation 
between rc* and i* in the development of our cluster model. 

In Section 2, a cluster was defined, quite generally, by the condition that each 
of its molecules interacts with at least one of its partners and with none of the mole- 
cules in any other cluster. This criterion is easy to state but almost impossible to 
apply directly. For  one thing, there is a degree of arbitrariness about the radius o f  
interaction for a given molecule because its forces do not go abruptly to zero at some 
definite distance. Even if they did, the definition depends on the collective behavior 
of the group of molecules, and there exists no simple collective property which can be 
used for its application. Therefore, some approximate Collective criterion is necessary. 
It has already been mentioned that Reiss et aL (2~.2b)made use of the collective property 
"center of mass" in order to define a cluster by requiring that all molecules within 
the cluster lie within some prescribed distance of its center of mass. Unfortunately, 
such a cluster could never be identified with a drop, since its center of mass could 
not fluctuate with respect to its bounding surface. We therefore consider another 
collective criterion. 

Consider a cluster of i molecules. It can of course adopt many distinct configura- 
tions. Each of these configurations can be fitted into some sphere of minimum radius. 
Several examples of this are illustrated in Fig. 3 for a hypothetical cluster of eight 
molecules. 

It is obvious that configurations requiring very large spheres will occur only 
infrequently. Not  only is there a limited probable number of such configurations, 
but they possess small binding energy. Thus, both entropy and energy considerations 
militate against configurations requiring large spheres. Very small spheres are similarly 
discriminated against by entropy, and the binding energy will not only be small, but 
probably negative. Thus, a plot, versus r, of  the probable number of configurations 
requiring a sphere of radius r will look something like Fig. 4. There will be a fairly 
well defined radius which can be associated with each cluster such that the chance of  

Fig. 3. Possible extensions of cluster of eight molecules. 
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Fig .  4.  

I I/r ? 
f 

r 

Probable number of cluster configurations requiring radius r versus r. 

observing configurations requiring a larger radius is negligible. We show this radius 
by the dashed line in Fig. 4 and ask whether it is reasonable to identify it with rc* 
discussed previously. 

If the pressure of the supersaturated vapor is p, then, according to our earlier 
discussion, there will be an re* determined by p and going with the drop which can 
remain in (unstable) equilibrium with the vapor. For this particular cluster of size i*, 
it is reasonable that the radius of the limiting sphere in Fig. 4 and rc* are the 
same. For clusters of nonequilibrium size, however, the situation is by no means so 
clear. On the other hand, since a cluster, once formed, is supposed to be a relatively 
isolated group of molecules, its internal configuration should be governed largely 
by the interactions among those molecules and not by the vapor pressure (which is 
determined by molecules outside the group; the vapor pressure does, however, affect 
the frequency of occurrence of the cluster). We can therefore assume that the "radius" 
of the cluster will be the same, independent of whether it is or is not in equilibrium 
with the surrounding vapor. When it is at equilibrium, however, we can estimate 
the radius by the re* which goes with i*. Both rc* and i* will belong to a different 
pressure than that prevailing in the vapor, but this presents no difficulty since it is 
only the relation between re* and i* which we need to know. For the purpose of 
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determining it, we can set a "drop"  of i* molecules in equilibrium with vapor at the 
requisite pressure and, in principle, generate curves such as Figs. 1 or 2, from either 
of which rc* can be determined. 

By the preceding description, we therefore have a means of associating a sphere 
of given radius with a cluster of a given number of molecules. We can now drop the 
asterisk without confusion and speak of re and i in place of rc* and i*. 

Notice that the collective criterion which has now been introduced allows the 
cluster to be interpreted as a drop. The sphere acts like a dividing surface, and as 
the cluster assumes different configurations within the sphere, its center of mass 
fluctuates with respect to the sphere. 

It  now remains to evaluate q~ for the cluster defined in this way, and to insert it 
into Eq. (16). We do this in the next section. 

4. EVALUATION OF q~ FOR THE DROPLIKE CLUSTER 

In order to determine qi for the clusters defined in the preceding section, we 
evaluate the phase integral Q in a manner different from that invoked in 
Section 2. We consider the volume V in which the vapor is contained, and dispose 
throughout V a set of spherical dividing surfaces at rest in the laboratory frame of  
reference. The radii of these surfaces will be the various allowable rc(i) discussed in 
the preceding section. In general, there will be ni surfaces of "size" i, where n satisfies 
Eq (27). These may be distributed with centers in arbitrary positions. 

Now, with the given set of surfaces fixed, we take snapshot after snapshot of 
the gaseous molecular configuration until we arrive at one in which, by chance, each 
of the spherical dividing surfaces encloses exactly the right number of molecules 
(i.e., those with radius rc(i) enclose i molecules), and none of the N molecules lies 
outside a surface. To this configuration we assign the weight 

1-I exp{--fluij} dRii (47) 
i j  

where u~j is the potential energy of interaction of i molecules in a j th  configuration 
and dRij is the combined volume element for a cluster of i molecules in a j th  configura- 
tion, i.e., 

]-[ dRij = dr1 dr2 "'" dru (48) 
ij 

the product 1--[,j being taken over all clusters. 
We do not count a configuration (giving it zero weight) in which, for example, 

more than i molecules are within a dividing surface of radius rc(i) even if, for this 
configuration, none of the N molecules lies outside of dividing surfaces, since, by 
the definition or rc(i) and our assumptions, this will be an infrequent occurrence, 
and can be ignored at the outset. This means that we also give zero weight to configu- 
rations in which surfaces with radii re(i) contain less than i molecules, since, by 
Eq. (27), if none of the N molecules are outside of dividing surfaces, such a configu- 
ration will demand that some dividing surfaces have more molecules than their 
"sizes" warrant. 

822/z/z-7 
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If we keep taking snapshots in this manner, assigning a weight factor such as 
Eq. (47) each time the same dividing surfaces are filled with the s a m e  molecules (the 
analog of a "specific pin-down ''8 of Section 2), and never accepting the same total 

twice, we will, by summing these factors, eventually configuration of molecules 
arrive at a total weight, 

where 

in which 

]-I (z~a)) n' (49) 
i 

z~a~ = f~, "'" f exp(--/?u0 drl ' "  dri (50) 

= (51) 

and is the volume inside a dividing surface of size i. In Eq. (49), all the ij  factors 
in (47) corresponding to size i have, by symmetry, become the same upon integration. 
The integrations correspond to the sum over all possible configurations of the total 
gas consistent with the given fixed set of dividing surfaces. 

Actually, zl is the configuration integral for i molecules confined to a volume vi. 
The complete partition function for this system is obviously 

= /(i! A (52) 

and represents the partition function for a s ta t ionary  drop with dividing surface 
at r c . If we knew the free energy a~ a) for this drop (all of the material inside r c in 
Fig. 1), we could calculate q~a) as 

q~a) = exp(_fia~a)) (53) 

As i becomes very large, a~ a) can of course be estimated accurately by B~ of Eq. (7). 
Returning to the evaluation of Q, we must now consider configurations in which 

one, several, or all of the dividing surfaces have their centers shifted. In this process, 
we ignore the possible overlap of two surfaces--the gas of clusters being so highly 
attenuated. On the other hand, there is one problem of overlap which we cannog 
ignore. Consider Fig. 5. This shows two possible positions of a given dividing surface 
such that the center has been shifted by the relative distance )t. The i molecules 
within the surface, at its first position at the left, will, on the average, be distributed 
throughout the volume v~ according to a density profile such as that shown in Fig. 1. 
When the volume is shifted to right, they will be similarly distributed throughout 
the shifted volume. As long as there is at least one  molecule in the shaded region at 
the right, the unshifted and shifted configurations will correspond to different to ta l  

configurations for the N molecules of the gas since the molecules in the shaded region 
will be in previously unoccupied regions of space after the shift. 

a It is worth re-emphasizing that we deal here only with an analog of a "specific pin-down." The 
integrand in Eq. (33) cannot be equated with the integrand in Eq. (50). In this section we are re- 
evaluating the phase integral, from the start, by a different method. 
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Fig. 5. 

t 
Overlap between two posit ions of  a given dividing surface. 

On the other hand, consider the volume vi -- A corresponding to the overlap of 
the two spheres: In either the shifted or unshifted case, it is possible for the i molecules 
to "fluctuate" into this common region of overlap. Thus, a mere shifting of the 
dividing surface does not guarantee a new total  configuration. 

We treat this difficulty as follows. Since the clusters are so few that we Can 
ignore those portions of configuration space in which they encounter one another, 
we can deal with the shift of each cluster independently. Before the sphere is shifted, 
we have only the contribution zi �9 Assume, however, that the sphere's center is shifted 
by the distance dA (replacing A in Fig. 5 by an infinitesimal). The nonoverlapped 
volume (A in Fig. 5) may now be represented by dr. Corresponding to the shifted 
configuration, we are not permitted to add another z~ d), since most of the configura- 
tions will overlap those in the original zi and would then have been counted twice. 
Integration only over configurations confined to the region of overlap would yield 
a configuration integral which we may denote by z~ a)'. Using the canonical ensemble 
relation between Helmholtz free energy a~ and configuration integral, it follows that 

(a)', (~) = exp[--(a( -- ai) /kT]  = exp(--pi d v / k T )  (54) zi /z~ 

where a~ and ai' are the Helmholtz free energies of the i molecules in the respective 
volumes, and p~ is the pressure required to compress the "drop" from the volume 
v~ to v~ --  dr, i.e., compression from v~ to the volume of overlap. Since by the argu- 
ments of Section 3 the relation r c ~ rc(i ) is obtained by assuming that a "drop" of 
size i is subjected to its equilibrium pressure (even though this is true in the vapor 
only for the nucleus), p~ must be the equilibrium pressure. Put in another way, p~ is 
the pressure exerted by the hard wall of the container at re in Fig. 1. 

The last relation in Eq. (54) follows from the fact that, at constant temperature, 

da~ = --p~(--dv)  = p ,  ,iv (55) 

Clearly, the part of z~ which is nonredundant is 

z(a) (a)" = z~a)[l _ e x p ( - - p i  dv/kT)]  = (z~a)/kT)pi  dv (56) i - -  z i  
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and it is this (rather than z~ a)) which must be added to the original unshifted configu- 
ration. Thus, we get 

z~ ~) + (z~a)lkT) p~ dv (57) 

If we shift the center a second time, there will again be redundant configurations, 
and after a third and fourth time, etc. Consider some shift dh (after many shifts) in 
the process of covering the entire volume V. Let Vc be the volume already covered. 
The sphere, in its position before this particular shift, must have formed part of Vc. 
Therefore, if dr, the new volume--not part of V~--is exposed by the shift, the new 
contribution can once again be represented by Eq. (56) where, of course, dv may 
differ from shift to shift. Thus, if dv in the kth shift is denoted by 

(z}a) /k T) Piav (k) (58) 

the total contribution over all shifts may be denoted by 

z~ a) do(k) (a) z~ a) z~ a) (1 + kT  Y z , -~z~ a ) - ? - ~ - ~ p i  = z i  + kT  f v  p idv  = piV]  (59) 

where V is the volume of the gas. The unity in the last form of Eq. (59) may be 
ignored in comparison with p~V/kT (which is of the order of Avogadro's number), 
and so we obtain 

zi = (piV/kT) z~ a) (60) 

Now, each factor in Eq. (49) can be treated in this manner independently 
(ignoring, as we do, rare encounters between clusters) so that we arrive at a still 
larger portion of the gas configuration integral including, thereby, the sum of contri- 
butions available when all possible dispositions of the given set of dividing surfaces 
are taken into account, 

f p'v z d)I"' (61) 
I~i t kT  

We obtain a still larger portion by permuting the N molecules among the various 
clusters discounting, as in Section 2, permutations which merely exchange whole 
clusters. Thus, we multiply Eq. (61) by N~, given by Eq. (40), and get 

N! 1-[ {(p,V/kT) z~a)/i!} "' (62) 
i n i  ! 

The corresponding portion of the phase integral is obtained by multiplying Eq. (62) 
by the momentum contribution 1/A ~N and by 1/N t. to reassert the indistinguishability 
of the molecules. We thus get 

(q')~' (63) 
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where now 
(a) 

q~ _ p~ V z~ _ p~ V q~) (64) 
k T  i! A ~i ~ 

where we have used Eq. (52), and q}a) is the partition function of a stationary drop. 
To complete the evaluation of the phase integral, we have only to sum Eq. (63) 

over all distributions a, 

(q~)"~ 17 {(pi V/kT) q~a)}ni 

an equation which is the analog of Eq. (42). Clearly, the analog of Eq. (44) follows 
immediately: 

(n~) = q~ exp i/~1 = (p~V/kT) q~al exp i/x 1 (66) 

in which, instead of the replacement factor, there now appears the quantity 

Fi' = p~V/kT (67) 

5. C O N C L U D I N G  R E M A R K S  

The q~a~ in Eq. (66) is the quantity denoted by ~a~ in Eq. (23), namely the 
partition function of a stationary drop. Except for the assumptions (now well defined 
and mild) which have been made in describing the cluster, the "translation-rotation" 
problem and the question of internal consistency have been resolved. All other 
difficulties must now be relegated to the evaluation of q~a). If the drop is very large, 
a~ a) in Eq. (53) is given by B~ of Eq. (7), and Eq. (66) becomes 

(n~) = (p~V/ Nk T) N exp(-- Wi/k T) (68) 

where W~ is given by Eq. (10) and we have the conventional result except for the 
factor 

p~V/NkT (69) 

Normally, the cluster of nuclear size corresponds to the drop which can be in unstable 
equilibrium with the vapor. Because of the new factor which depends on i in Eq. (69), 
the cluster size corresponding to the minimum in (n~) no longer corresponds to 
this drop, and so the nucleus and the equilibrium drop are different. For the equi- 
librium drop, however, p~ is the actual pressure in the supersaturated vapor, and 
since the vapor is ideal, the factor, Eq. (69), for this drop is unity. Thus, for the 
equilibrium drop, there is no correction at all, i.e., assuming that a~ a) is B~, there is 
no replacement factor. If the nuclear size lies close to the equilibrium drop, there 
can only be a very small correction and the conventional theory would apply. That 
this is so has been determined by specific numerical computations. ~ln) 

The ( p y / N k T )  in Eq. (68) does in fact have a very simple origin, as we shall 
now demonstrate by considering clusters large enough to be represented by macro- 
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scopic drops. In this case, we appeal to the conventional "thermodynamic" theory 
and calculate the work of formation of the drop- -but  now with certain corrections. 
These corrections originate from the precise way in which the clusters are defined in 
Section 3, where it was agreed to assume that the internal condition of a cluster of 
i molecules was sensibly the same as that of cluster in equilibrium with its own vapor 

pressure  Pi �9 
Suppose we calculate the reversible work of formation of such a cluster, large 

enough to be a drop. We do this in three steps: 

(1) Compress the supersaturated vapor from its pressure p to p~. The work in 
this step is 

W,, ~ 1) = N k T  ln(p~/p) (70) 

(2) Form a drop of i molecules. The work here is 

W} 2) := i{/z~ -- /~l(Pi)} + ai2l" = i k r  ln(po/p~ ) + ai ~/3 (71) 

This resembles Eq. (10) except that ~z is now that which goes with Pi rather than p. 
Actually,/~ should also correspond to Pi rather than p, but here the error is so small 
(dependence of the free energy of a condensed system on pressure) that we ignore it. 
As before, P0 is the saturation pressure of the vapor. 

(3) Expansion of the system back to the pressure p. In the expansion, there 
are only N -- i original gas molecules and one cluster, thus, N -- i -k 1 molecules. 
The work here is 

W~ ~) : (N -- i + 1) k T  ln(p /p i )  (72) 

During the expansion, it is assumed that the drop remains in metastable (super- 
heated) equilibrium. Thus, we arrive at the vapor-cluster state required by our 
original assumption. 

The total reversible work is 

W i  t : W~ 1) i A- W~ 2) -~- ~V~ 3) : { i k T  ln(po/p) + ~i 2/3} 

- -  k T  ln(p i /p)  = W.~ - -  k T  ln(p i /p)  (73) 

where Wi is identical with the quantity of Eq. (10). Use of Wi' in place of Wi in 
Eq. (9) yields 

ni : Npi /p  : ( p i V / N k T )  N exp(-- W / k T )  (74) 

which is the same as Eq. (68). 
Thus, we see that the new factor is not  a replacement factor but rather a correc- 

tion arising from the assumption that a cluster has the same internal properties as 
it would under its own vapor pressure. For  the large cluster, the conventional thermo- 
dynamic approach therefore agrees with that based on the classical phase integral. 

What about the replacement factor ? It seems clear that for the case of fluid 
nuclei it simply doesn't exist! To demand its existence requires rejection of convert- 
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tional statistical mechanics, and in particular of the customary application of the 
Gibbs phase integral. On the other hand, it could exist for crystalline nuclei. The 
reasoning is as follows. 

In the evaluation of the phase integral, all accessible configurations of the 
system are to be included. On the other hand, approximate methods usually ignore 
those configurations with small probability. For example, in the preceding treatment, 
we neglected configurations which could not be analyzed into clusters. 

Ordinarily, in the treatment of solids, we include only those configurations in 
which the system looks like a crystal. In these configurations, there are long-range 
correlations so that a constraint applied at the surface of the crystal is propagated 
throughout the body. Surface constraints forbidding translation and rotation of the 
crystal as a whole therefore fix the positions of all lattice sites. The only configurations 
considered (those with nonnegligible probability) locate molecules on lattice sites, 
and hence a crystal which is not rotating or translating at its surface does have these 
degrees of freedom supressed. 

Because of the absence of long-range correlation, this is not the case in the 
fluid--surface constraints are attenuated within a surface layer of at most a few 
molecular diameters thickness. Thus, the free energy of liquid at rest in its container 
does include all degrees of freedom. 

Since, as in Fig. 1, a drop may be thought of as a fluid in a container, it already 
possesses the requisite translational and rotational motions, and this is confirmed 
by the more precise analysis. For crystalline nuclei, however, it may be necessary to 
include additional factors to account for such motions. 

In any event, the most serious questions are associated with the identification 
of a~ a~ with Bi,  except when the nuclei prove to be very large. Strictly speaking, in 
most cases, any discrepancy between the conventional theory and experiment cannot 
be ascribed to the replacement factor (taking this to mean a correction for an incon- 
sistent treatment of translational degrees of freedom), but rather to an erroneous 
evaluation of a~ ~). In fact, it is probably best to rewrite Eq. (68) as 

(n~) = (p iV/NkT)  N exp {--(a} a) -- ilzz)/kT} (75) 

to emphasize this fact. 
The present treatment opens the way, however, to the correct evaluation of a~ ~). 

For example, the treatment places one on relatively firm ground in the use of tech- 
niques now available for the statistical thermodynamics ~14.1~) of curved surfaces and 
of small drops in evaluating a~ a~. Alternatively, using the arrangement described in 
Fig. 1, enclosing i molecules in a spherical container with hard, repelling walls at r , ,  
q~a) (and hence a~ a)) could be evaluated numerically using large-scale computers, 
since i will usually be only of the order of 100. In any event, the way should now be 
open to further progress in the theory of nucleation. 
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